
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2003; 42:999–1026 (DOI: 10.1002/�d.570)

Direct testing of subgrid scale models in large-eddy simulation
of a non-isothermal turbulent jet

C. Ferreira Gago1;∗;†, F. Garnier2 and F. Utheza3

1Ecole Nationale des Ponts et Chauss�ees; ENPC; Laboratoire CEREVE; 6 et 8; avenue Blaise Pascal;
Cit�e Descartes; Champs-sur-Marne; Marne-la-Vall�ee 77455; France

2O�ce National d’Etudes et de Recherches A�erospatiales; ONERA; 29; avenue de la Division Leclerc;
Châtillon 92320; France

3Laboratoire d’Etudes des Transferts d’Energie et de Mati�ere-LETEM; Universit�e de Marne-la-Vall�ee;
Bâtiment Lavoisier; rue Galil�ee; 77454 Marne-la-Vall�ee C�edex 02; France

SUMMARY

A comparative assessment of subgrid models of compressible large-eddy simulations is performed for a
temporally evolving heated round jet at a low Mach number. Initially, the temperature di�erence with
respect to the ambient is chosen according to the one at the nozzle exit of a typical aircraft engine.
Subgrid modelling in both the momentum and the energy equations is then necessary to close the
problem. As basic models, we have considered the compressible versions of the Smagorinsky model,
the mixed-scale model (which can be de�ned as a dynamic-type model) and the similarity model. The
�rst two models are also supplemented with the similarity model or=and a selective function. Large-eddy
simulations (LES) results are compared with those obtained from a direct numerical simulation (DNS).
Thus to allow correspondence between DNS and LES the Reynolds number, in the present study,
is still not very high and equal to 500. Among the cases investigated the hybrid Smagorinsky model
(linear combination of the Smagorinsky model and the similarity model) displays the best performances,
especially when dealing with the turbulent stresses and the turbulent heat �ux. Copyright ? 2003 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of heated round jets is relevant for many aerospace applications, such as the jet
propulsion e�ciency, the jet exhaust noise reduction and the atmospheric impact of aircraft
exhaust pollutants [1–3]. Since the jet behaviour is dominated by the action of turbulence,
the properties of the �ow are di�cult to measure or foresee analytically. Therefore, it is
desirable to develop methods, which must be able to predict with acceptable con�dence the
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evolution of the jet �ow. Recently, with the advance of computing power, it has become
possible to conduct Direct Numerical Simulations (DNS) of jets. However, DNS of jet �ows
are limited to low Reynolds numbers, well below the values of engineering interest. On the
other hand, and as far as high Reynolds numbers are of concern, an intermediate approach
could be used which is called Large-Eddy Simulation (LES). The contribution of the large
scales of the turbulent �ow is then computed exactly while the smallest scales or subgrid scales
(SGS) of turbulence are modelled, according to the well-known Kolmogorov assumption of
their universal behaviour. Although the idea of scale separation between the large and the
small ones appears somewhat schematic, the LES technique is essentially based on solving
the turbulent scales which are large enough to contain the energy-carrying information about
the �ow con�guration (i.e. �ow geometry and boundary conditions). So, LES appears as a
promising numerical technique to simulate turbulent �ows and it is seen as a method midway
between exact simulations (DNS) and time average modelled computations (RANS).
The two major di�culties in LES approach are mostly the insu�cient grid resolution and

the inadequate SGS models. Indeed, most of the SGS models are deduced from incompressible
isotropic theory, and give satisfactory results when applied to such category of �ows. However,
if the dynamics of the �ow di�er much from this of isotropic turbulence, the SGS models
must be examined in order to get the one which provides the most accurate prediction of the
�ow comportment.
A lot of DNS and LES of jet �ows are available in literature [2, 4, 5], but very few are

focused on the direct testing of subgrid scale models. One may quote for example the recent
work of Le Ribault et al. [5], which presents a posteriori tests in the case of a spatially
developing jet. The authors compare di�erent subgrid models: the Smagorinsky model, the
dynamic Smagorinsky model and the dynamic hybrid Smagorinsky model and conclude that
dynamic hybrid Smagorinsky model provides the best results when comparing with the two
others. However, in these studies, attention has been mostly given to the cases of isothermal
jets while, within areas mentioned above, turbulent jets of interest are often non-isothermal.
The e�ect of jet heating could be fundamental, as it was already proved for acoustic emissions.
As a result, an experimental and theoretical investigation carried out by Tanna et al. [6]
on heated supersonic, shock-free jets suggests that an additional source of noise could be
attributed to density or temperature �uctuations.
So, the motivation of this work is precisely to compare the performances of di�erent LES

techniques, in the transitional regime of a low subsonic heated round jet. Following the
dimensional analysis of Jacquin and Garnier [7], the initial mean temperature at the center of
the jet is chosen according to the one at the nozzle exit of a typical aircraft engine. Subgrid
modelling in both the momentum and the energy equations is then necessary to close the
problem. The adequacy of nine subgrid models will be achieved by comparisons of LES
results with those of DNS. In order to allow correspondence between DNS and LES, the
Reynolds number in the present study is still not very high, but in the near future, we will
conduct simulations at higher Reynolds number.
The numerical simulations of the �ow are based on the use of three-dimensional temporal

DNS and LES of the compressible Navier–Stokes equations. As a large extend in the stream-
wise direction is required, indeed, we decide to investigate the case of a temporal jet. In a
temporal simulation, the �ow is computed in a reference frame moving at the mean �ow
speed and �ow periodicity is assumed. The temporal jet evolution qualitatively exhibits the
same physical phenomena as in the spatial case but requires an order of magnitude less
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computational e�ort. Furthermore, some authors (see, for example, Reference [8]) have shown
that the numerical simulation based on the time-dependent approach could be a useful tool
for interpreting turbulence phenomena if some restrictions have been applied.
The structure of the paper is as follows. In Section 2, we start with the description of the

governing equations used in DNS and LES, while Section 3 is devoted to the subgrid mod-
elling. Next, in Sections 4 and 5, we focus on the numerical solutions techniques, including
the initial and boundary conditions. The results of the calculations are discussed in Section 6,
and the �nal section contains the conclusions from this work.

2. BASIC EQUATIONS

The systems of equations solved in the direct numerical simulations and in the large-eddy
simulations are presented below.
The �ow is governed by the fully compressible Navier–Stokes equations. The mass,

momentum and total energy equations are written below in a familiar dimensionless form:

@t�+ @j(�uj)=0 (1)

@t(�ui) + @j(�uiuj) + @ip− @j�ij=0 (2)

@tE + @j{(E + p)uj} − @j(�ijui) + @jqj=0 (3)

Symbols @t and @j denote the time derivative and divergence operator, respectively. The sum-
mation convention for repeated indices is used. t represents time and xj spatial co-ordinates.
Concerning the �ow variables, the velocity vector is denoted by u, while the density �, the
pressure p and the temperature T are linked by the state law for perfect gas:

p=�T=�M 2 (4)

The viscous stress tensor is given by

�ij=
�(T )
Re

Sij (5)

Sij is the strain rate:

Sij= @jui + @iuj − 2=3�ij@kuk (6)

where �ij is the Kronecker delta, de�ned as

�ij=1 if i= j and �ij=0 if i �= j (7)

The �uid is assumed to be an ideal gas with a power law temperature-dependent viscosity
[9]:

�(T )=T 0:75 (8)

E is the total energy density:

E=
p
�− 1 +

1
2
�uiui (9)
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qj represents the heat �ux:

qj=
−�(T )

(�− 1)Re Pr M 2

@T
@xj

(10)

Re and M are the Reynolds and Mach numbers, respectively. The Prandtl number Pr and
the ratio of speci�c heats �=Cp=Cv are set equal to 0.7 and 1.4, respectively, the admitted
values for air.
We have assembled and tested a computer simulation code that can perform compressible

large-eddy simulations or direct numerical simulations of Equations (1)–(3). In DNS these
equations are solved directly on a �ne grid. On the other hand, in the LES approach, these
equations are �ltered in order to reduce the number of scales to be solved, and the grid con-
sidered is coarser than in DNS. The LES part of the code is based on Vreman’s decomposition
[10], relevant elements of which we now review.
As recalled in Section 1, in LES the large, energy-carrying scales are computed directly,

while the small, unresolved scales that tend to be isotropic (and hence more universal in
nature) and their interaction with the large scales are modelled. In order to separate the large
from the small scales, a �ltering operation is used. The �lter extracts the large scales from
the entire �ow �eld, so that a �ltered (or resolved, or large scale) variable is denoted by an
overbar and de�ned as follows:

�f=
∫
�
G(x − ^;�)f(^) d^ (11)

where x and ^ are vectors in the entire domain �. The �lter function G depends on the cut-o�
length scale �, and so determines the size of the small scales. G is assumed to commute
with time and spatial derivatives and satis�es the condition:∫

�
G(x − ^;�) d^=1 (12)

For compressible �ows, it is usual to introduce the Favre average [11] de�ned as

f̃=
�f
��

(13)

When applying the former operation to the governing equations (1)–(3), one obtains the
�ltered equations of motion, which are solved in LES. They take the following form:

@t ��+ @j( ��ũj) = 0 (14)

@t( ��ũi) + @j( ��ũiũj) + @i �p− @j�̂ij =−@jA1 + @jA2 (15)

@tÊ + @j{(Ê + �p)ũj} − @j(�̂ijũi) + @jq̂j =−B1 − B2 − B3 + B4 + B5 + B6 − B7 (16)

In this description, the left-hand sides of Equations (14)–(16) are the Navier–Stokes equations
now expressed in terms of �ltered variables. The right-hand sides contain the so-called subgrid
terms. These subgrid terms represent the e�ects of unresolved scales of motion on the large
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scales and need to be modelled. They are de�ned as:

A1 = �ij= ��(ũiuj − ũiũj) (17)

A2 = �ij − �̂ij = �(T )Sij
Re

− �(T̃ )Sij
Re

(18)

B1 =
1

�− 1 @j(puj − �pũj) (19)

B2 =p@kuk − �p@kũk (20)

B3 = @j(�kjũk) (21)

B4 = �kj@jũk (22)

B5 = �kj@juk − �kj@jũk (23)

B6 = @j(�ijũi − �̂ijũi) (24)

B7 = @j(qj − q̂j) (25)

The de�nitions of the �ltered modi�ed viscous stress tensor, strain rate, total energy density
and heat �ux are based on their non-�ltered counter-part, so that:

�̂ij =
�(T̃ )
Re

S̃ij (26)

S̃ij = @jũi + @iũj − 2=3�ij@k ũk (27)

Ê =
�p

�− 1 +
1
2
��ũiũi (28)

q̂j =
−�(T̃ )

(�− 1)Re Pr M 2 @jT̃ (29)

Finally, the system is closed with the �ltered state law:

�p= ��T̃ =�M 2 (30)

3. SUBGRID MODELLING

This section is devoted to the description of the subgrid models considered in the LES method.
We will successively investigate the models used in the momentum and in the energy equa-
tions. In order to provide a point of reference for the subgrid models, we have also performed
a DNS on the coarse LES grid. This calculation corresponds to the case in which the subgrid
terms are simply omitted.
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3.1. Momentum equation

As we will see through this paper, several assumptions allow us to simplify the LES governing
equations by neglecting some subgrid terms. Firstly and as usually assumed in LES, the
contribution of the subgrid term A2, which results from the non-linearity of the viscous term,
will not be accounted for [10]. Concerning the subgrid term A1, namely the subgrid-scale
tensor, nine models will be investigated.

3.1.1. The Smagorinsky model. The �rst model is the well-known Smagorinsky model [12]
given by

�ij=− ���smSij(ũ) with �sm = (Cs�)2|S(ũ)| and |S(ũ)|2 = 1
2 Sij(ũ)Sij(ũ) (31)

where Sij is the strain rate de�ned by Equation (27). With respect to the Smagorinsky constant
Cs, several values have been proposed. In our study, we take the value Cs = 0:2, suggested
by Clark et al. [13] and Deardo� [14] for the case of isotropic turbulence. The characteristic
length scale is commonly chosen to be

�=(�x�y�z)1=3 (32)

where �x, �y and �z are mesh sizes in the x, y and z directions, respectively.
This eddy viscosity model formally models the anisotropic part of the tensor �ij only, which

is de�ned as

�aij= �ij − 1
3 �kk�ij (33)

Indeed, the Smagorinsky model was �rst developed for the LES of incompressible �ows. In
that previous case, the isotropic part of the tensor is usually not modelled but incorporated
in the �ltered pressure [10]. Thus the LES solves the modi�ed pressure, while the (�ltered)
pressure itself remains unknown. For compressible �ows, the pressure appears both in the
momentum equation, the energy equation and in the equation of state, which makes the
approach involving a modi�ed pressure not feasible anymore. Consequently, in our study, we
will simply neglect the isotropic part of the subgrid-scale tensor. Furthermore, according to
Erlerbacher et al. [15] conclusions, the isotropic part of the subgrid-scale tensor is dominated
by the thermodynamic pressure, so that it can be neglected without introducing appreciable
errors. This hypothesis is assumed to remain valid for all the cases examined in our study.
However, the Smagorinsky model, though very popular, has some notable drawbacks including
the fact that it depends exclusively on large scales. This former feature turns this model too
dissipative, specially when dealing with transitional �ows [16].

3.1.2. The mixed-scale model. The excessive dissipation of the Smagorinsky model can be
overcome if the model constant is replaced by a coe�cient depending on both large and
small scales of turbulence. Such model has been proposed by Sagaut et al. [17]. In this way,
the mixed-scale model could be considered as a dynamic adjustment of the Smagorinsky
coe�cient. As the Smagorinsky model, the mixed-scale model is based on scalar subgrid
viscosity now given by

�sm =Cm|S|�(q2c)(1−�)=2�(1+�) (34)
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where q2c is the kinetic energy of the small scales evaluated by the following formula:

q2c =
1
2 ũ

′
i ũ

′
i (35)

The �uctuating resolved scales ũ′ are extracted from the resolved velocity �eld employing a
discrete �lter denoted by a wide hat:

ũ′i = ũi − ˆ̃ui (36)

The discrete �lter is given by

ˆ̃ui= 1
4 ũi−1 +

1
2 ũi +

1
4 ũi+1 (37)

It can be interpreted as a second-order approximation of a Gaussian �lter whose characteristic
length is �̂=

√
6� [18].

All the simulations presented in this article were performed with �=0:5 and Cm =0:06.
These values are deduced from the Eddy Damped Quasi-Normal Markovian Theory in the
isotropic case [19].

3.1.3. The similarity model. While eddy viscosity models may be able to represent the global
dissipative e�ects of the small scales in a satisfactory way, they usually display very little
correlation with the real subgrid scale stresses [19]. The similarity model, formulated by
Bardina et al. [20] and revised by Liu et al. [21] is not of the eddy viscosity type and
try to reproduce the details of the stresses more accurately. The premise of this model is
that the signi�cant interactions between the resolved scales of motion and the subgrid scales
involve the smallest of the resolved scales and the largest of the subgrid scales. So that the
structure of a tensor built from subgrid scales remains similar to these of the corresponding
tensor evaluated from the smallest resolved scales. More speci�cally, the de�nition of subgrid
scale tensor in terms of the un�ltered variables is applied to the �ltered variables, so that the
compressible extension of this model takes the form

�ij=(( ��ũiũj)ˆ− ( ��ũi)ˆ( ��ũj)ˆ= �̂�) (38)

The wide hat denotes the test �lter given by Equation (37). This model underestimates the
energy cascade from the �ltered �eld to subgrid scales and does not lead to stable calculations
[22]. However, in contrast to eddy viscosity models, the similarity model has a mechanism
to represent backscatter of energy, from subgrid to resolved scales [23].

3.1.4. Hybrid models. The linear combination of an eddy viscosity-type model and the sim-
ilarity model provides an hybrid model, written below in its compressible version:

�ij=0:5(− ���smSij(ũ) + (( ��ũiũj)ˆ− ( ��ũi)ˆ( ��ũj)ˆ= �̂�)) (39)

The subgrid scale viscosity is provided either by the Smagorinsky model or the mixed-scale
model to constitute the hybrid Smagorinsky model or the hybrid mixed-scale model, respec-
tively. Hybrid models take advantage of both the similar and eddy viscosity-type models.
They correlate well with the real subgrid scale stresses and dissipates adequately the energy
in the small scales [19].
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3.1.5. Selective function. As previously recalled, subgrid modelling is mainly based on the
isotropic nature of the unresolved scales. David [24] introduces a structural sensor (selective
function) which is able to identify the regions of the �ow where the former assumption is ef-
fectively veri�ed. This selective function only applied to models involving a subgrid viscosity.
The idea is to switch o� the eddy viscosity when the �ow is not three-dimensional enough.
Let us denote 	 the angle between the local �ltered vorticity (!̃=∇× ũ) and the local aver-
aged �ltered vorticity ( ˆ̃!=∇× ˆ̃u, the wide hat denotes the test �lter given by Equation (37)).
The three-dimensionalization criterion is based on the variations of this angle. More precisely
and according to David, if the value of 	 exceeds 	0 = 20◦, the eddy viscosity is turned
on. Otherwise, only molecular dissipation acts. In our study, we will consider the selective
function proposed by Sagaut and Tro� [25] and de�ned as

f	0 =

{
1 if 	¿	0

r(	)n else
(40)

The calculations presented hereafter have been performed using n=2 [19] and r is written as
follows:

r(	)=
tan2(	=2)
tan2(	0=2)

(41)

Furthermore, pointing out the fact that the angle 	 can be expressed as a function of the local
�ltered vorticity !̃, the local averaged �ltered vorticity ˆ̃! and the local �uctuating �ltered
vorticity !̃′ can be de�ned as

!̃′ = !̃− ˆ̃! (42)

!̃′2 = ( ˆ̃!)2 + !̃2 − 2× !̃× ( ˆ̃!)× cos 	 (43)

and taking into account the trigonometric relation:

tan2(	=2)=
1− cos 	
1 + cos 	

(44)

which becomes:

tan2(	=2)=
2× !̃× ˆ̃!− ( ˆ̃!)2 − !̃2 + (!̃′)2

2× !̃× ˆ̃!+ ( ˆ̃!)2 + !̃2 − (!̃′)2
(45)

The selective function acts as a multiplying factor for the subgrid viscosity, that leads to a
new modi�ed subgrid viscosity given by

�sms = �sm ×f	0 (46)

Finally, the names of the models with their abbreviations are listed in Table I.

3.2. Energy equation

The �ltered equations for compressible �ow have subgrid terms both in the momentum and
energy equation. In the previous paragraph we focussed on the modelling of the dominant
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Table I. Subgrid models for the turbulent stress tensor.

Model Abbreviation

No model NM
Smagorinsky SM
Mixed Scale MSM
Similarity BM
Hybrid Smagorinsky HSM
Hybrid Mixed Scale HMSM
Selective Smagorinsky SSM
Selective Mixed Scale SMSM
Selective Hybrid Smagorinsky SHSM
Selective Hybrid Mixed Scale SHMSM

subgrid term in the momentum equation, the turbulent stress tensor. The subgrid terms in the
�ltered energy equation are the subject of this paragraph. First of all, following the a priori
tests performed by Vreman [10], the subgrid terms B6 and B7, created by the non-linearities in
the viscous stress and heat �ux, respectively, can be neglected. The subgrid term B2 is purely
a compressibility e�ect since it vanishes if the �ow is divergence free with constant density.
Sarkar et al. [26] have shown, through direct numerical simulations of isotropic compressible
turbulence, that the in�uence of B2 is negligible. Finally, subgrid models for B1, B3, B4 and
B5 are necessary to close the problem.
The subgrid term B1 involves the �ltered pressure and the �ltered velocity. It represents the

e�ect of subgrid scales on the conduction of heat in the large scales. In the case of an eddy
viscosity-type model, it is modelled as follows:

B1 =− @
@xj

{
���sm

(�− 1)Prt M 2

@T̃
@xj

}
(47)

The value of the turbulent Prandtl number is set equal to 0.7 [27].
If a similarity model is used (the wide hat denotes the test �lter given by Equation (37))

then

B1 =
1

(�− 1)�M 2

@
@xj

{( ��T̃ ũj)ˆ− ( ��T̃ )ˆ( ��ũj)ˆ= �̂�} (48)

We can also adopt an hybrid model de�ned as

B1 =
1
2
@
@xj

{
− ���sm
(�− 1)Prt M 2

@T̃
@xj

+
1

(�− 1)�M 2 {( ��T̃ ũj)ˆ− ( ��T̃ )ˆ( ��ũj)ˆ= �̂�}
}

(49)

If an hybrid model is used for B1 the subscript ‘T’ will be added to the name of the model.
The SGS terms B3 and B4 depend directly upon the subgrid-scale tensor, they are thus

obtained in a straightforward manner reporting the expression used to model the former tensor
in Equations (21) and (22).
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The subgrid term B5 also intervenes in the transport equation for the subgrid scale kinetic
energy k, investigated by Ghosal et al. [28]. Following this reference we model the term by

B5 =C
 ��
k3=2

�
(50)

With

k=
�ll
2 ��

(51)

C
 is a dynamic coe�cient which is assumed to be a function of time only. The procedure
used to determine the former coe�cient is that of Vreman [10]. It is based on the global
balance of the terms in the integrated k-equation, which leads to

C
=

∫
�((1− �)B1 + B3 − B4) d�∫

� ��
k3=2

�
d�

(52)

For models involving an eddy viscosity k is evaluated as [28]:

k=
�2sm
�2 (53)

For the similarity model, k is rather equal to qc given by Equation (35).

4. NUMERICAL METHODS AND BOUNDARY CONDITIONS

The present section details the numerical solution techniques used to solve the compressible
Navier–Stokes equations. The algorithm remains the same whatever the method considered,
i.e. direct numerical simulation or large-eddy simulation.
Calculations are performed by using a sixth-order compact scheme in space for convective

terms [29]. In order to minimize the aliasing error, we follow the procedure applied by
Boersma and Lele [30]. Thus, the non-linear terms have been rewritten in the skew symmetric
form i.e.:

@�uiuj
@xj

=
1
2

(
@�uiuj
@xj

+ ui
@�uj
@xj

+ �uj
@ui
@xj

)
(53′)

Di�usive terms are discretized by using a second-order accurate �nite di�erence scheme.
This also helps to damp plausible instabilities. The time integration is carried out with a
third-order Runge–Kutta method [31].
The formulation of suitable conditions to take into account all the information passing in-

ward and outward across the boundaries, while minimizing spurious re�ections, constitutes
one of the principal di�culties in the simulation of unsteady �ows in a truncated open com-
putational domain. The non-re�exive conditions introduced by Thompson [34] attempts to
meet these requirements and are used at the lateral boundaries of the computational domain.
In the axial (i.e. streamwise) direction, periodicity is assumed, as usually done in temporal
developing jet �ows. The wavelength in the streamwise direction, i.e. the length of our con-
trol volume, is based on Michalke and Hermann’s [32] inviscid linearized stability analysis
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for spatially evolving jet. The large-scale structure of turbulence in a circular jet is domi-
nated by the axisymmetric and �rst-order azimuthal components of turbulence. In order to
observe the development of an instability, the length of the computational domain must be
an even multiple of the instability’s wavelength. Michalke and Hermann give the wavelength
of maximum growth of the �rst azimuthal disturbance. Furthermore, Gaster [33] establishes a
relation between the frequency and ampli�cation rates for a disturbance growing with respect
to time and those of a spatially growing wave having the same wave-number. So by using
Gaster’s transformation, we obtain the wavelength of maximum growth of the �rst azimuthal
disturbance for a temporally evolving jet. Finally, in order to observe two pairing events, the
downstream size of the computational domain is taken equal to fourth this wavelength.

5. COMPUTATIONAL PARAMETERS

The subject of the present study is a Mach 0.2 round jet exiting into an in�nite domain. The
equations presented in Section 2 are non-dimensionalized by scaling the velocities with the
centreline velocity and the length scale is equal to the radius R. The former is expressed as
the middle of the jet shear layer de�ned by

U (R)= 1
2(Uj +U0) (54)

where Uj and U0 are the jet core velocity and the external �ow velocity, respectively. In the
following, we use the initial velocity pro�le:

U (r)=
1
2
(Uj +U0)− 1

2
(Uj −U0) tanh

{
1
4
R
	

(
r
R
− R
r

)}
(55)

The distance r is related to the Cartesian co-ordinates by the relation:

r=
√
x2 + z2 (56)

	 denotes the momentum boundary layer thickness of the jet shear layer:

	=
∫ ∞

0

{
U −U0
Uj −U0

}{
1− U −U0

Uj −U0

}
dr (57)

Note that the static case U0 = 0 has been investigated by several authors [35–37] and seems
to model the circular jet �ow in the potential core region quite well as shown by Moore
[38]. We restrict the present investigation to one value of the jet parameter, namely R=	=10.
Indeed, among the cases studied by Michalke and Hermann [32], this value corresponds to
the most unstable jet velocity pro�le. Random Gaussian shape perturbations are imposed on
the three components of the velocity �eld. Other reference values are the centreline values for
the density �j, the temperature Tj, and the viscosity �j. Based on this, the Reynolds number is
Rej=�jUjR=�j=500. It is su�ciently high to allow transition to turbulence, and reasonably
low to enable an accurate DNS to be performed. The initial mean temperature is provided by
the Crocco–Busemann relation [9], and the jet temperature ratio is Tj=T0 = 2 [7], where the
subscript ()0 indicates a constant ambient quantity. The initial mean pressure is constant.
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Figure 1. Schematic of the �ow con�guration.

The computational domain is rectangular and the grid is uniform in all directions. The cross
plane extends from x; z=−5R to 5R and, as explained in the previous section, the streamwise
extent of the computational box is Ly=12R. A schematic of the �ow con�guration is presented
in Figure 1. The DNS is conducted on a �ne grid (201× 201× 201) corresponding to a mesh
of �y=0:06R and �x; z=0:05R. On the other hand, LES calculations are performed on a
coarser grid (81× 81× 81) corresponding to �y=0:15R and �x; z=0:125R. The Courant–
Friedrichs–Lewy number is 0.6. The time step is �t =0:005 and 0.0125 for DNS and LES,
respectively.
For computing the mean �ow pro�les, the simulated data, which is in Cartesian co-ordinates

(x; y; z), is transformed to cylindrical co-ordinates (r; 	; y) using a higher-order cubic spline
interpolation formula.

6. RESULTS AND DISCUSSION

Results are presented for the turbulent jet �ow calculations and subgrid model performances
are evaluated by comparisons with our direct numerical simulation. In the �rst part, the
accuracy of the DNS as well as the transition of the jet �ow to a fully turbulent state
are brie�y discussed. The second part is devoted to LES validations. The issues discussed
deal with the di�erent processes involved in the growth of instabilities. Both the mean and
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Figure 2. Temporal evolution of the momentum thickness for direct numerical simulations performed
on a �ne (201× 201× 201), a medium (161× 151× 161) and a coarse grid (81× 81× 81).

the turbulent quantities are examined. These include dynamics variables, such as the mean
axial velocity or the turbulent stresses, but also quantities directly related to temperature: the
temporal evolution of centreline temperature and turbulent heat �ux.
Relevant scales for the validation of an LES simulation are the resolved ones. Thus, the

comparison between LES and DNS results must involve these scales only. In other words,
DNS simulation should be �ltered. Many authors proceed in this way (see, for example,
References [5] or [39]). Here, we have chosen to directly confront the LES results with
the DNS ones. Indeed, the e�ective �lter associated with LES remaining unknown, the
choice of a �lter to be applied to the DNS becomes somewhat ambiguous. However, we
have experimented the e�ect of a Gaussian �lter upon our DNS simulation. Di�erences
between �ltered and non-�ltered DNS have not lead to convincing conclusions. Moreover,
�ltered DNS results have not provided a better agreement with the LES ones (data not
shown).

6.1. DNS calculation

In order to investigate the in�uence of resolution, three grids were considered, a �ne
(201× 201× 201) a medium (161× 151× 161) and a coarse one (81× 81× 81). The tem-
poral evolution of the momentum thickness is displayed in Figure 2, for the three meshes
described above. The resolution of the �ner grid is found su�cient. Indeed, the results ob-
tained with the �ner and the medium grids are almost identical (within less than 1% of relative
error). On the other hand, the large di�erences (the maximum relative error is about 20%)
observed between the results of the �ner and the coarser grid, show that the resolution of the
coarser grid is clearly inadequate.
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Figure 3. Vorticity magnitude contour plots in a meridional plane parallel to the axial direction:
(a) t=55, (b) t=65, (c) t=75, (d) t=85. Contour range from 0.1 to 3 in steps of 0.1.

Transition processes occurring in the jet �ow can be highlighted by the visualization of
the vorticity magnitude contour plots, presented in Figure 3. The latter clearly illustrates the
growth of instabilities and transition to fully developed turbulence. Initially, the vorticity is
con�ned into a circular sheet. As perturbations grow, vorticity rolls up and accumulates in
large vortex rings (Figure 3(a)). Later pairs of neighbouring rings merge (Figure 3(b)). Indeed,
this process is particularly evident for the rings located at y=2 and 5 in Figure 3(a) which
merge, as observed in Figure 3(b). The breakdown of these large structures occurs before
a second pairing event can take place (Figure 3(c)). Then the �ow is mainly composed by
small scales and exhibits a complicated disordered behaviour (Figure 3(d)). Other authors have
already investigated these mechanisms. One may quote the work of Verzicco and Orlandi [40]
and more recently that of Vreman et al. [39]. Figure 3 also demonstrates that all relevant
scales are accurately represented on the �ne grid.

6.2. LES validation

As already explained, LES computations will be done on the coarser grid and the adequacy
of a subgrid model will be achieved by a comparison of the LES results with those of the
DNS computed on the �ner grid referred to as the well resolved DNS in the following. The
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large di�erences, previously observed in Figure 2 between DNS calculations performed on
the �ner and on the coarser grid, illustrate that there is something to improve upon. Then the
subgrid model will be considered to be bad if its contribution does not ameliorate the results
obtained with the DNS on coarser grid (NM), and considered to be good if, on the contrary,
it does.

6.2.1. Evolution of mean velocity and temperature �elds. A comparison of the subgrid mod-
els with respect to the temporal evolution of the mean centreline velocity and mean centreline
temperature is given in Figures 4 and 5. These mean values are computed in this paper as
follows. First, the instantaneous �eld is averaged in the homogeneous direction y. Second,
the averaged value is interpolated into a polar grid. Third, the later value is averaged in the
azimuthal 	 direction, to obtain a mean pro�le, which is function of r. No averaging in time
is performed, therefore the mean pro�le is function of time. The values depicted in Figures 4
and 5 correspond to the mean pro�les at the location r=0. The typical evolutions of the
mean centreline velocity and temperature are retrieved. In the potential core region, centreline
velocity and temperature keep their maximum initial values. Later, during the transition period,
they drop rapidly and once the �ow is fully turbulent a period of slow decay sets in. This
behaviour is retrieved in almost all the cases except for the SM model. The latter severely
under-predicts the drop of the mean values. This illustrates the well-known property of the
SM model, which introduces so much viscosity during the transitional regime that hinders
transition to turbulence. Such an excess of dissipation has also been observed by Vreman et
al. [39], in his study of a turbulent mixing layer. On the opposite, the use of BM model
results in an earlier decrease of the mean values along the centreline. Remember that the
BM model has a serious �aw; it is not dissipative. This means that the calculation becomes
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Figure 4. Temporal evolution of the mean centreline axial velocity.
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Figure 5. Temporal evolution of the mean centreline temperature.

unstable because �ow scales are under-resolved on the coarser grid and there is no subgrid
viscosity to damp these instabilities. Moreover all the models involving the selective function
give even worst or quasi-equal predictions than NM. The models MSM and HSM do improve
the results. This illustrates two properties: both the linear combination of the SM model with
the similarity model and the use of a dynamic adjustment of the SM coe�cient meet the major
shortcoming of the Smagorinsky model, namely the excessive dissipation in the transitional
regime.
In the HSM calculation the hybrid model only applies to the subgrid stress tensor. We also

perform a LES simulation with a hybrid model for both the subgrid tensor and the subgrid
heat �ux B1 (see Equation (49) in Section 3). The latter calculation is referred to HSMT in
�gures. First, results show that the use of a hybrid model for B1 does not a�ect the evolution
of the mean centreline velocity (see Figure 4). Second, HSMT and HSM calculations do not
exhibit signi�cant di�erences, except maybe at the beginning of the transition processes, where
HSMT compares much better with DNS results than HSM.
Pro�les of mean streamwise velocity and mean temperature normalized by their respective

centreline values are plotted in Figures 6 and 7 for the di�erent models and the well-resolved
DNS. These pro�les are obtained using the method described in the previous paragraph and
results are presented at di�erent times of the simulation. Qualitative features deduced from the
analysis of the previous �gures are con�rmed. We �rst look at the velocity pro�les. At the
beginning of the transition process, all the models �t the curve relative to the well-resolved
DNS calculation (data not shown). Then, as the simulation progresses in time, the round jet
spreads for the contribution of perturbations. This spreading is over estimated for the models
which results show an earlier decay of the centreline velocity (see for example the curves
relative to the BM calculation in Figures 4 and 6), while it is under estimated for the SM
model.
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Figure 6. Pro�les of mean axial velocity normalized by the mean centreline velocity:
(a) t=45, (b) t=55, (c) t=60, (d) t=65.

Similar conclusions are obtained for the evolution of the temperature distribution. We
can also notice that the agreement between the HSM or (HSMT) model and the well re-
solved DNS simulation is better achieved in the external region of the jet (r¿1:2) than
in the core, as observed in Figure 7(d). Furthermore, when comparing Figures 6(d)–7(d),
we can remark that the thermal �eld spreads faster than the velocity one. At this stage,
the temperature variations are supposed to be su�ciently weak so that any physical rea-
soning would lead one to conclude that the temperature is a passive scalar. Consequently
the pro�les would be coincident. This apparent anomaly was experimentally observed by
Davies et al. [41]. They investigated the case of an heated jet, where the temperature dif-
ference with respect to the ambient was small enough to be considered as a passive
scalar.
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Figure 7. Pro�les of mean temperature normalized by the mean centreline temperature:
(a) t=45, (b) t=55, (c) t=60, (d) t=65.

Finally, HSM (or HSMT) and MSM models improve the results. Moreover, HSM
(or HSMT) most closely approaches the DNS mean temperature and velocity pro�les.

6.2.2. Evolution of turbulent kinetic energy. Figure 8(a) shows the temporal evolution of
the turbulent kinetic energy. It is calculated as follows. First a spectrum is acquired by tak-
ing the Fourier transform of the velocity �eld in the periodic direction, and integrating the
Fourier coe�cients in the x; z plane. Finally turbulent kinetic energy is obtained by adding the
values of the one-dimensional spectrum up all wavenumbers. The subgrid scale and molec-
ular dissipation integrated over the domain are shown in Figures 8(b) and 8(c) respectively.
The integration is performed with the trapezoidal rule. Subgrid dissipation 
sgs illustrates the
e�ect of the subgrid models, that is the amount of energy drained by the subgrid scales. On
the other hand, molecular dissipation 
mol is relative to the presence of small scales. Both
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Figure 8. Temporal evolution of the: (a) total kinetic energy, (b) subgrid dissipation,
(c) molecular dissipation and (d) backscatter.

molecular and subgrid scale dissipations are involved in the evolution of the total energy and
de�ned as


mol = �S̃ij@jũj (58)


sgs =− ���ij@jũj (59)

The molecular dissipation is always positive whereas the subgrid one can be positive or
negative. If it is positive, the subgrid scales remove energy from the resolved ones (forward
scatter); if it is negative they release energy to the resolved scales (backscatter). For eddy
viscosity-type models, 
sgs is always positive. These models are absolutely dissipative and
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therefore can only account for forward scatter. Only the cases of hybrid or similarity models
can provide negative subgrid dissipation. The amount of backscatter is presented in Figure
8(d) for the models of concern and is calculated as follows:∫

�
min(
sgs; 0) dx (60)

In Figure 8(a), the conclusions relative to the previous �gures are con�rmed. The excessive
dissipation of the SM is so important that it erases the instabilities and therefore inhibits the
increase of the turbulent kinetic energy. Figure 8(b) clearly reveals this excess of subgrid
scale dissipation early in the simulation, while in Figure 8(c), the absence of small scales of
turbulence is ensured by the fall of the molecular dissipation during all the calculation. On
the opposite, the transition is too rapid for the BM calculation. Selective models as well as
HMSM and NM lead to similar observations. In these former cases the amount of turbulent
energy is expected to be due to the presence of too many small scales. At the beginning, the
subgrid scale dissipation provided by the former models is not enough signi�cant to be able
to damp the initial perturbations (see Figure 8(b)). For example, if we consider the curves
relative to the SSM simulation, subgrid scale dissipation begins to act at t≈ 40, which is
too late. Thus, as shown in Figure 8(c) by an earlier increase in the molecular dissipation,
SSM allows the development of non-physical �uctuations (or the presence of small scales)
resulting from the insu�cient resolution of the coarser grid. Moreover, for BM and all hybrid
models, the mechanism of backscatter indicates a reversal of the energy cascade wherein large
scales absorb energy from the small ones and consequently participates to the evolution of
energy. However, as shown in Figure 8(d), in the worst of the investigated cases (maximum
of backscatter), namely the BM model, the amount of backscatter only represents about 10%
of the forward scatter, and the insu�cient viscosity is still believe to be responsible for the
earlier growth of the turbulent energy. Furthermore, we can notice that the use of the selective
function accentuates the backscatter phenomenon. This is particularly evident when comparing
the curves relative to HSM (or HSMT) and SHSM simulations in Figure 8(d). For the HSM
(or HSMT) the increase of energy is slightly delayed while it is better predicted by the MSM
model. Indeed, until t≈ 50 in Figure 8(b), the subgrid dissipation provided by the HSM (or
HSMT) is greater than that of the MSM. So HSM (or HSMT) introduces too much subgrid
viscosity which eliminates more small scales than the MSM does. This is con�rmed by the
evolution of the molecular dissipation in Figure 8(c), which remains smaller for HSM (or
HSMT) than for MSM. It also helps to explain the di�erences observed in Figure 4: the
decrease of the centreline velocity appears earlier with the MSM model than with the HSM
(or HSMT) model.

6.2.3. Turbulent stresses and turbulent heat �ux. Another important feature allowing to char-
acterize the accuracy of a subgrid model is its correlation with the real velocity and tempera-
ture �uctuations provided by the well resolved DNS data. Therefore, the ability of the di�er-
ent models to reproduce the details of these turbulent intensities is addressed in the present
paragraph. In the case of round jet �ow simulations, pro�les of turbulent stresses are often
formulated in cylindrical co-ordinates [30, 42], and we will therefore adopt this con�guration.
Figures 9 and 10 present comparisons of the spatially averaged turbulence components at
t=65, well beyond the beginning of the transition processes. At this time, the mean centre-
line velocity has already lost about 50% of its initial maximum value (see Figure 4, DNS
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Figure 9. Pro�les of mean normalized turbulent intensities at t=65: (a) 〈u′	2〉=〈Uc〉2, (b) 〈u′r2〉=〈Uc〉2,
and (c) 〈u′y2〉=〈Uc〉2, (d) 〈u′ru′y〉=〈Uc〉2.

calculation). These latter are computed in this paper as follows. First, the instantaneous �eld
�i (temperature or velocity) is interpolated into a polar grid. Second, we compute the Fourier
transform of each velocity and temperature component. We next obtain the turbulent intensi-
ties, which are de�ned as

|�′
i �

′
j |= �̂i(x; z; ky; t)�̂tj (x; z; ky; t) (61)

Here �̂i, �̂
t
j and ky denote the Fourier transform of the velocity or temperature component,

the complex conjugate of the Fourier transform velocity or temperature component and the
wave number in the axial direction, respectively. Finally 〈�′

i �
′
j 〉 is computed by taking simple

average over all points in the homogeneous direction.
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Figure 10. Pro�les of mean normalized turbulent intensities at t=65: (a) 〈T ′2〉=〈Tc〉2,
(b) 〈T ′u′y〉=(〈Tc〉〈Uc〉), (c) 〈T ′u′r〉=(〈Tc〉〈Uc〉).

All selective models as well as BM, NM, SM and HMSM do not agree satisfactory. HSM
and HSMT calculations give similar results. From a qualitative point of view, the agreement
between DNS and LES results is reasonably good for HSM (or HSMT) and MSM models, as
shown in Figure 9. However, the magnitudes of the stresses are not retrieved. Indeed, LES
only involves the large-scale contribution while DNS also includes the small scale one, there-
fore a quantitative agreement between DNS and LES results cannot be expected. However,
Figure 10 clearly demonstrates that the MSM model is unable to reproduce the structure of
the �uctuating temperature and turbulent heat �ux �elds, while they are qualitatively predicted
by the HSM (or HSMT) model.

6.2.4. Flow visualizations. The aim of the present paragraph is to test the ability of the
subgrid models to capture the jet �ow topology during its transition to a fully turbulent state.
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Figure 11. Well resolved DNS calculation. Tridimensional view of the pressure (bright surfaces) and
the density (dark surfaces) �elds. Pressure surfaces satisfy the relation Piso =Pi + 0:2× (Pmin − Pi),
where Pi and Pmin denote the initial uniform pressure value and the minimum pressure value at the
time considered, respectively. Density surfaces correspond to the minimum density value at the time

considered. (a) t=20, (b) t=60, (c) t=65, (d) t=75.

Figure 11 is relative to the DNS simulation. We present the temporal evolution of constant
pressure surfaces Pcst and constant density surfaces �cst, which satisfy the following relations:

Pcst = Pi + (Pmin − Pi)× 0:2 (62)

�cst = �min (63)

where Pi, Pmin and �min are the initial uniform pressure value, the minimum pressure value and
the minimum density value at the time considered, respectively. Pressure surfaces are used to
visualized the development of perturbations whereas constant density surfaces rather provide
a good de�nition of the jet and external �ow interface. This kind of visualization was �rst
introduced by Fouillet [43] in his study of compressibility e�ects upon a round jet. In Figure
11(a) (t=20), large structures of pressure surface appear as rings around density surface and
make up a helix. In Figure 11(b) the structures of pressure surface undergo a connection
and characterizes the end of the transitional regime. Later, while turbulent kinetic energy
decreases, the pressure as well as the density �elds fragment, and the jet �ow breaks down
into turbulence (see Figures 11(c) and 11(d)). So, the growth of the fundamental instability
is strongly related to the temporal evolution of the turbulent kinetic energy, and it is expected
that the conclusions deducted from this later quantity remain valid when the topology of the
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Figure 12. NM calculation at t=60. Tridimensional view of the pressure (bright surfaces) and the den-
sity (dark surfaces) �elds. Pressure surface satis�es the relation Piso =Pi+0:2× (Pmin−Pi), where Pi and
Pmin denote the initial uniform pressure value and the minimum pressure value at the time considered,
respectively. Density surface corresponds to the minimum density value at the time considered.

Figure 13. SM calculation at t=75. Tridimensional view of the pressure (bright surfaces) and the density
(dark surfaces) �elds. Pressure surface satis�es the relation Piso =Pi + 0:2× (Pmin − Pi), where Pi and
Pmin denote the initial uniform pressure value and the minimum pressure value at the time considered,
respectively. Density surface corresponds to the minimum density value at the time considered.

�ow is of interest. Therefore, we will �rst examine the case in which an earlier increase
of the energy is observed and which may therefore exhibit an earlier transition into fully
turbulent state. As an example we examine the case of the NM simulation in Figure 12
(t=60). Obviously, the insu�cient resolution of the coarser grid accelerates the evolution
of the jet, such that at t=60 the �ow already exhibits a turbulent comportment while, at
the same time, the DNS results only show the connection of the pressure rings. This also
con�rms the presence of too many small scales early in the simulation. Similar conclusions
hold for BM, SHSM, SHMSM, NM, SMSM, SSM and HMSM models as well (data not
shown). If we now look at the SM results, which severely delay the growth of the turbulent
kinetic energy and consequently hinders transition to turbulence, we will not be surprised to
see in Figure 13 that the pressure rings still dominate the jet behaviour until t=75. HSM
and HSMT simulations provide very similar results. Figures 14 and 15 display the temporal
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Figure 14. MSM calculation. Tridimensional view of the pressure (bright surfaces) and the density
(dark surfaces) �elds. Pressure surfaces satisfy the relation Piso =Pi + 0:2× (Pmin − Pi), where Pi and
Pmin denote the initial uniform pressure value and the minimum pressure value at the time consid-
ered, respectively. Density surfaces correspond to the minimum density value at the time considered.

(a) t=20, (b) t=60, (c) t=65, (d) t=75.

evolution of pressure and density constant surfaces for the MSM model and the HSM model,
respectively. Among the models considered in our study and concerning the jet �ow topology,
the MSM and HSM (or HSMT) models provide undoubtedly the best results. The scenario
for the DNS is correctly reproduced, however HSM (or HSMT) results are smoother than
MSM ones. This is particularly evident when comparing Figure 14(c) and 15(c). For this
latter reason we consider that HSM (or HSMT) model provides better results than the MSM
model.

7. SUMMARY AND CONCLUSIONS

In this paper, we have presented a posteriori tests in the case of a temporally developing
heated round jet at a low Mach number. Nine subgrid models have been investigated for the
subgrid stress tensor and the subgrid heat �ux in the �ltered energy equation as well. The
adequacy of nine subgrid models has been achieved by comparisons with our direct numerical
simulation. Therefore, to allow correspondence between DNS and LES, the Reynolds number
in the present study is still not very high. In order to provide a point of reference for the
subgrid models, we have also performed a DNS on the coarse LES grid. This calculation
corresponds to the case in which the subgrid terms are simply omitted.
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Figure 15. HSM calculation. Tridimensional view of the pressure (bright surfaces) and the density
(dark surfaces) �elds. Pressure surfaces satisfy the relation Piso =Pi + 0:2× (Pmin − Pi), where Pi and
Pmin denote the initial uniform pressure value and the minimum pressure value at the time consid-
ered, respectively. Density surfaces correspond to the minimum density value at the time considered.

(a) t=20, (b) t=60, (c) t=65, (d) t=75.

In the present work, the turbulent jet of interest is non-isothermal and the initial temperature
di�erence with respect to the ambient is chosen according to the one at the nozzle exit of a
typical aircraft engine. So the aim of the present work was to demonstrate the ability of LES
to reproduce both the details of the dynamic and thermal �elds accurately.
Some characteristic behaviours of the subgrid scale models were con�rmed such as the

excessive dissipation of the Smagorinsky model which hinders transition to turbulence, or the
production of too many small scales introduced by the similarity modelling. We have also
demonstrated that the use of the selective function does not provide any improvement. Finally,
the mixed-scale model and the hybrid Smagorinsky model give satisfactory results. However,
the hybrid Smagorinsky model is preferred over adopting the mixed-scale model essentially
because it provides a much better representation of the stresses and the turbulent heat �ux.
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